A New Probabilistic Spectral Pitch Estimator: Exact and MCMC-approximate Strategies

نویسندگان

  • Harvey D. Thornburg
  • Randal J. Leistikow
چکیده

We propose a robust probabilistic pitch (f0) estimator in the presence of interference and low SNR conditions, without the computational requirements of optimal time-domain methods. Our analysis is driven by sinusoidal peaks extracted by a windowed STFT. Given f0 and a reference amplitude (A0), peak frequency/amplitude observations are modeled probabilistically in order to be robust to undetected harmonics, spurious peaks, skewed peak estimates, and inherent deviations from ideal or other assumed harmonic structure. Parameters f0 and A0 are estimated by maximizing the observations’ likelihood (here A0 is treated as a nuisance parameter). Some previous spectral pitch estimation methods, most notably the work of Goldstein [3], introduce a probabilistic framework with a corresponding maximum likelihood approach. However, our method significantly extends the latter in order to guarantee robustness under adverse conditions, facilitating possible extensions to the polyphonic context. For instance, our addressing of spurious as well as undetected peaks averts a sudden breakdown under lowSNR conditions. Furthermore, our assimilation of peak amplitudes facilitates the incorporation of timbral knowledge. Our method utilizes a hidden, discrete-valued descriptor variable identifying spurious/undetected peaks. The likelihood evaluation, requiring a computationally unwieldy summation over all descriptor states, is successfully approximated by a MCMC traversal chiefly amongst high-probability states. The MCMC traversal obtains virtually identical evaluations for the entire likelihood surface at a fraction of the computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate inference for first-order probabilistic languages

A new, general approach is described for approximate inference in first-order probabilistic languages, using Markov chain Monte Carlo (MCMC) techniques in the space of concrete possible worlds underlying any given knowledge base. The simplicity of the approach and its lazy construction of possible worlds make it possible to consider quite expressive languages. In particular, we consider two ext...

متن کامل

MCMC With Disconnected State Spaces

Bayes Nets simplify probabilistic models, making it easy to work with these models. Unfortunately, sometimes people devise models that are too complicated to allow calculation of exact probabilities, so they instead use approximate inference, such as Markov Chain Monte Carlo (MCMC). However, MCMC can fail if the Bayes Net has zero-probability states that “disconnect” the state space. In this pa...

متن کامل

Approximate Kalman Filtering for the Harmonic plus Noise Model

We present a probabilistic description of the Harmonic plus Noise Model (HNM) for speech signals. This probabilistic formulation permits Maximum Likelihood (ML) parameter estimation and speech synthesis becomes a straightforward sampling from a distribution. It also permits development of a Kalman filter that tracks model parameters such as pitch, harmonic amplitudes, and autoregressive coeffic...

متن کامل

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

Speech Enhancement with Spectral Magnitude Side Information

The work described in this thesis examined a new approach to speech enhancement. Enhancement algorithms to estimate clean speech from a noisy signal and a limited amount of side information were developed and implemented. The work evaluated algorithms that used linear predicitive (LP) coefficients and zero-phase impulse response coefficients as side information. An approximate maximum likelihoo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004